direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×D57, C6⋊2D38, C38⋊2D6, C57⋊2C23, C114⋊2C22, (C2×C38)⋊5S3, (C2×C6)⋊3D19, (C2×C114)⋊3C2, C19⋊2(C22×S3), C3⋊2(C22×D19), SmallGroup(456,53)
Series: Derived ►Chief ►Lower central ►Upper central
C57 — C22×D57 |
Generators and relations for C22×D57
G = < a,b,c,d | a2=b2=c57=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 900 in 64 conjugacy classes, 31 normal (9 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C23, D6, C2×C6, C19, C22×S3, D19, C38, C57, D38, C2×C38, D57, C114, C22×D19, D114, C2×C114, C22×D57
Quotients: C1, C2, C22, S3, C23, D6, C22×S3, D19, D38, D57, C22×D19, D114, C22×D57
(1 128)(2 129)(3 130)(4 131)(5 132)(6 133)(7 134)(8 135)(9 136)(10 137)(11 138)(12 139)(13 140)(14 141)(15 142)(16 143)(17 144)(18 145)(19 146)(20 147)(21 148)(22 149)(23 150)(24 151)(25 152)(26 153)(27 154)(28 155)(29 156)(30 157)(31 158)(32 159)(33 160)(34 161)(35 162)(36 163)(37 164)(38 165)(39 166)(40 167)(41 168)(42 169)(43 170)(44 171)(45 115)(46 116)(47 117)(48 118)(49 119)(50 120)(51 121)(52 122)(53 123)(54 124)(55 125)(56 126)(57 127)(58 179)(59 180)(60 181)(61 182)(62 183)(63 184)(64 185)(65 186)(66 187)(67 188)(68 189)(69 190)(70 191)(71 192)(72 193)(73 194)(74 195)(75 196)(76 197)(77 198)(78 199)(79 200)(80 201)(81 202)(82 203)(83 204)(84 205)(85 206)(86 207)(87 208)(88 209)(89 210)(90 211)(91 212)(92 213)(93 214)(94 215)(95 216)(96 217)(97 218)(98 219)(99 220)(100 221)(101 222)(102 223)(103 224)(104 225)(105 226)(106 227)(107 228)(108 172)(109 173)(110 174)(111 175)(112 176)(113 177)(114 178)
(1 72)(2 73)(3 74)(4 75)(5 76)(6 77)(7 78)(8 79)(9 80)(10 81)(11 82)(12 83)(13 84)(14 85)(15 86)(16 87)(17 88)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 101)(31 102)(32 103)(33 104)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 112)(42 113)(43 114)(44 58)(45 59)(46 60)(47 61)(48 62)(49 63)(50 64)(51 65)(52 66)(53 67)(54 68)(55 69)(56 70)(57 71)(115 180)(116 181)(117 182)(118 183)(119 184)(120 185)(121 186)(122 187)(123 188)(124 189)(125 190)(126 191)(127 192)(128 193)(129 194)(130 195)(131 196)(132 197)(133 198)(134 199)(135 200)(136 201)(137 202)(138 203)(139 204)(140 205)(141 206)(142 207)(143 208)(144 209)(145 210)(146 211)(147 212)(148 213)(149 214)(150 215)(151 216)(152 217)(153 218)(154 219)(155 220)(156 221)(157 222)(158 223)(159 224)(160 225)(161 226)(162 227)(163 228)(164 172)(165 173)(166 174)(167 175)(168 176)(169 177)(170 178)(171 179)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171)(172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228)
(1 57)(2 56)(3 55)(4 54)(5 53)(6 52)(7 51)(8 50)(9 49)(10 48)(11 47)(12 46)(13 45)(14 44)(15 43)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(58 85)(59 84)(60 83)(61 82)(62 81)(63 80)(64 79)(65 78)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(86 114)(87 113)(88 112)(89 111)(90 110)(91 109)(92 108)(93 107)(94 106)(95 105)(96 104)(97 103)(98 102)(99 101)(115 140)(116 139)(117 138)(118 137)(119 136)(120 135)(121 134)(122 133)(123 132)(124 131)(125 130)(126 129)(127 128)(141 171)(142 170)(143 169)(144 168)(145 167)(146 166)(147 165)(148 164)(149 163)(150 162)(151 161)(152 160)(153 159)(154 158)(155 157)(172 213)(173 212)(174 211)(175 210)(176 209)(177 208)(178 207)(179 206)(180 205)(181 204)(182 203)(183 202)(184 201)(185 200)(186 199)(187 198)(188 197)(189 196)(190 195)(191 194)(192 193)(214 228)(215 227)(216 226)(217 225)(218 224)(219 223)(220 222)
G:=sub<Sym(228)| (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,152)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,160)(34,161)(35,162)(36,163)(37,164)(38,165)(39,166)(40,167)(41,168)(42,169)(43,170)(44,171)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,127)(58,179)(59,180)(60,181)(61,182)(62,183)(63,184)(64,185)(65,186)(66,187)(67,188)(68,189)(69,190)(70,191)(71,192)(72,193)(73,194)(74,195)(75,196)(76,197)(77,198)(78,199)(79,200)(80,201)(81,202)(82,203)(83,204)(84,205)(85,206)(86,207)(87,208)(88,209)(89,210)(90,211)(91,212)(92,213)(93,214)(94,215)(95,216)(96,217)(97,218)(98,219)(99,220)(100,221)(101,222)(102,223)(103,224)(104,225)(105,226)(106,227)(107,228)(108,172)(109,173)(110,174)(111,175)(112,176)(113,177)(114,178), (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65)(52,66)(53,67)(54,68)(55,69)(56,70)(57,71)(115,180)(116,181)(117,182)(118,183)(119,184)(120,185)(121,186)(122,187)(123,188)(124,189)(125,190)(126,191)(127,192)(128,193)(129,194)(130,195)(131,196)(132,197)(133,198)(134,199)(135,200)(136,201)(137,202)(138,203)(139,204)(140,205)(141,206)(142,207)(143,208)(144,209)(145,210)(146,211)(147,212)(148,213)(149,214)(150,215)(151,216)(152,217)(153,218)(154,219)(155,220)(156,221)(157,222)(158,223)(159,224)(160,225)(161,226)(162,227)(163,228)(164,172)(165,173)(166,174)(167,175)(168,176)(169,177)(170,178)(171,179), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171)(172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228), (1,57)(2,56)(3,55)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(86,114)(87,113)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101)(115,140)(116,139)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,132)(124,131)(125,130)(126,129)(127,128)(141,171)(142,170)(143,169)(144,168)(145,167)(146,166)(147,165)(148,164)(149,163)(150,162)(151,161)(152,160)(153,159)(154,158)(155,157)(172,213)(173,212)(174,211)(175,210)(176,209)(177,208)(178,207)(179,206)(180,205)(181,204)(182,203)(183,202)(184,201)(185,200)(186,199)(187,198)(188,197)(189,196)(190,195)(191,194)(192,193)(214,228)(215,227)(216,226)(217,225)(218,224)(219,223)(220,222)>;
G:=Group( (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,152)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,160)(34,161)(35,162)(36,163)(37,164)(38,165)(39,166)(40,167)(41,168)(42,169)(43,170)(44,171)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,127)(58,179)(59,180)(60,181)(61,182)(62,183)(63,184)(64,185)(65,186)(66,187)(67,188)(68,189)(69,190)(70,191)(71,192)(72,193)(73,194)(74,195)(75,196)(76,197)(77,198)(78,199)(79,200)(80,201)(81,202)(82,203)(83,204)(84,205)(85,206)(86,207)(87,208)(88,209)(89,210)(90,211)(91,212)(92,213)(93,214)(94,215)(95,216)(96,217)(97,218)(98,219)(99,220)(100,221)(101,222)(102,223)(103,224)(104,225)(105,226)(106,227)(107,228)(108,172)(109,173)(110,174)(111,175)(112,176)(113,177)(114,178), (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65)(52,66)(53,67)(54,68)(55,69)(56,70)(57,71)(115,180)(116,181)(117,182)(118,183)(119,184)(120,185)(121,186)(122,187)(123,188)(124,189)(125,190)(126,191)(127,192)(128,193)(129,194)(130,195)(131,196)(132,197)(133,198)(134,199)(135,200)(136,201)(137,202)(138,203)(139,204)(140,205)(141,206)(142,207)(143,208)(144,209)(145,210)(146,211)(147,212)(148,213)(149,214)(150,215)(151,216)(152,217)(153,218)(154,219)(155,220)(156,221)(157,222)(158,223)(159,224)(160,225)(161,226)(162,227)(163,228)(164,172)(165,173)(166,174)(167,175)(168,176)(169,177)(170,178)(171,179), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171)(172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228), (1,57)(2,56)(3,55)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(86,114)(87,113)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101)(115,140)(116,139)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,132)(124,131)(125,130)(126,129)(127,128)(141,171)(142,170)(143,169)(144,168)(145,167)(146,166)(147,165)(148,164)(149,163)(150,162)(151,161)(152,160)(153,159)(154,158)(155,157)(172,213)(173,212)(174,211)(175,210)(176,209)(177,208)(178,207)(179,206)(180,205)(181,204)(182,203)(183,202)(184,201)(185,200)(186,199)(187,198)(188,197)(189,196)(190,195)(191,194)(192,193)(214,228)(215,227)(216,226)(217,225)(218,224)(219,223)(220,222) );
G=PermutationGroup([[(1,128),(2,129),(3,130),(4,131),(5,132),(6,133),(7,134),(8,135),(9,136),(10,137),(11,138),(12,139),(13,140),(14,141),(15,142),(16,143),(17,144),(18,145),(19,146),(20,147),(21,148),(22,149),(23,150),(24,151),(25,152),(26,153),(27,154),(28,155),(29,156),(30,157),(31,158),(32,159),(33,160),(34,161),(35,162),(36,163),(37,164),(38,165),(39,166),(40,167),(41,168),(42,169),(43,170),(44,171),(45,115),(46,116),(47,117),(48,118),(49,119),(50,120),(51,121),(52,122),(53,123),(54,124),(55,125),(56,126),(57,127),(58,179),(59,180),(60,181),(61,182),(62,183),(63,184),(64,185),(65,186),(66,187),(67,188),(68,189),(69,190),(70,191),(71,192),(72,193),(73,194),(74,195),(75,196),(76,197),(77,198),(78,199),(79,200),(80,201),(81,202),(82,203),(83,204),(84,205),(85,206),(86,207),(87,208),(88,209),(89,210),(90,211),(91,212),(92,213),(93,214),(94,215),(95,216),(96,217),(97,218),(98,219),(99,220),(100,221),(101,222),(102,223),(103,224),(104,225),(105,226),(106,227),(107,228),(108,172),(109,173),(110,174),(111,175),(112,176),(113,177),(114,178)], [(1,72),(2,73),(3,74),(4,75),(5,76),(6,77),(7,78),(8,79),(9,80),(10,81),(11,82),(12,83),(13,84),(14,85),(15,86),(16,87),(17,88),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,101),(31,102),(32,103),(33,104),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,112),(42,113),(43,114),(44,58),(45,59),(46,60),(47,61),(48,62),(49,63),(50,64),(51,65),(52,66),(53,67),(54,68),(55,69),(56,70),(57,71),(115,180),(116,181),(117,182),(118,183),(119,184),(120,185),(121,186),(122,187),(123,188),(124,189),(125,190),(126,191),(127,192),(128,193),(129,194),(130,195),(131,196),(132,197),(133,198),(134,199),(135,200),(136,201),(137,202),(138,203),(139,204),(140,205),(141,206),(142,207),(143,208),(144,209),(145,210),(146,211),(147,212),(148,213),(149,214),(150,215),(151,216),(152,217),(153,218),(154,219),(155,220),(156,221),(157,222),(158,223),(159,224),(160,225),(161,226),(162,227),(163,228),(164,172),(165,173),(166,174),(167,175),(168,176),(169,177),(170,178),(171,179)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171),(172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228)], [(1,57),(2,56),(3,55),(4,54),(5,53),(6,52),(7,51),(8,50),(9,49),(10,48),(11,47),(12,46),(13,45),(14,44),(15,43),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(58,85),(59,84),(60,83),(61,82),(62,81),(63,80),(64,79),(65,78),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(86,114),(87,113),(88,112),(89,111),(90,110),(91,109),(92,108),(93,107),(94,106),(95,105),(96,104),(97,103),(98,102),(99,101),(115,140),(116,139),(117,138),(118,137),(119,136),(120,135),(121,134),(122,133),(123,132),(124,131),(125,130),(126,129),(127,128),(141,171),(142,170),(143,169),(144,168),(145,167),(146,166),(147,165),(148,164),(149,163),(150,162),(151,161),(152,160),(153,159),(154,158),(155,157),(172,213),(173,212),(174,211),(175,210),(176,209),(177,208),(178,207),(179,206),(180,205),(181,204),(182,203),(183,202),(184,201),(185,200),(186,199),(187,198),(188,197),(189,196),(190,195),(191,194),(192,193),(214,228),(215,227),(216,226),(217,225),(218,224),(219,223),(220,222)]])
120 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 6A | 6B | 6C | 19A | ··· | 19I | 38A | ··· | 38AA | 57A | ··· | 57R | 114A | ··· | 114BB |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 6 | 6 | 6 | 19 | ··· | 19 | 38 | ··· | 38 | 57 | ··· | 57 | 114 | ··· | 114 |
size | 1 | 1 | 1 | 1 | 57 | 57 | 57 | 57 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
120 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D19 | D38 | D57 | D114 |
kernel | C22×D57 | D114 | C2×C114 | C2×C38 | C38 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 6 | 1 | 1 | 3 | 9 | 27 | 18 | 54 |
Matrix representation of C22×D57 ►in GL3(𝔽229) generated by
228 | 0 | 0 |
0 | 228 | 0 |
0 | 0 | 228 |
228 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 169 | 82 |
0 | 147 | 9 |
228 | 0 | 0 |
0 | 169 | 82 |
0 | 227 | 60 |
G:=sub<GL(3,GF(229))| [228,0,0,0,228,0,0,0,228],[228,0,0,0,1,0,0,0,1],[1,0,0,0,169,147,0,82,9],[228,0,0,0,169,227,0,82,60] >;
C22×D57 in GAP, Magma, Sage, TeX
C_2^2\times D_{57}
% in TeX
G:=Group("C2^2xD57");
// GroupNames label
G:=SmallGroup(456,53);
// by ID
G=gap.SmallGroup(456,53);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-19,323,10804]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^57=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations